
Honeyword Guessing with PassFlow:
Using Generative Flows to Attack Honeywords

Facoltà di Ingegneria dell’Informazione, Informatica e Statistica
Dipartimento di Informatica

Corso di Laurea in Informatica

Candidate

Pietro Cau
ID number 1883900

Thesis Advisor

Prof. Emiliano Casalicchio

Academic Year 2022/2023

Ringraziamenti

Voglio ringraziare i miei genitori per il loro lavoro, il loro sostegno e il loro
amore, che insieme mi hanno reso possibile di essere qui oggi.
Voglio ringraziare Michele e Chiara, per essermi da esempio ogni giorno,
forse anche di più di quanto io lo sia per loro; siete fortissimi.
Voglio poi ringraziare Valeria e Manuel, per essermi stati sempre accanto
tra alti e bassi, per essere stati miei sostenitori, consiglieri e tra i migliori
amici che avrei mai potuto chiedere.
Voglio inoltre ringraziare, insieme a loro, anche tutti gli altri colleghi con
i quali ho avuto il piacere di condividere sudore, sconfitte e vittorie in
questo percorso; Grazie per aver reso superabili i momenti difficili, e per
aver fatto di questa esperienza un ricordo da custodire.
Voglio ringraziare gli amici di una vita, abbiamo fatto tanta strada insieme,
e da ragazzi che eravamo ora siamo diventati uomini, facendoci da spalla
a vicenda. Ovunque il destino ci porterà so che io vi porterò con me.
Voglio infine ringraziare tutte le altre innumerevoli persone che in un
modo o nell’altro mi hanno aiutato, sostenuto o accompagnato, che sia
stato per un anno o per un giorno, grazie.
A tutti voi dedico questo traguardo.

Honeyword Guessing with PassFlow: Using Generative Flows to Attack Honey-
words
Sapienza University of Rome

© 2023 Pietro Cau. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: pietrocau000@gmail.com

mailto:pietrocau000@gmail.com

ii

Abstract

Honeywords are decoy passwords strategically placed alongside genuine passwords to
confuse attackers and detect unauthorized access attempts. Building on of previous
work done on the analysis of the security of honeywords, we test a new model for
honeyword guessing. PassFlow is a flow-based machine learning model originally
developed for password guessing, that in this thesis, is used for attacking honeywords.
The work of this thesis is, to the best of our knowledge, the first effort to assess
the capabilities and potential of Generative Flows (such as PassFlow) as guessing
models used to attack honeywords. Through empirical experiments we show how
PassFlow’s honeyword-guessing performance, while not always up to the task, under
certain settings can outperform models used in previous research.

iii

Contents

1 Introduction 1

2 Honeywords 3
2.1 Basics of the Honeywords System . 3
2.2 The Honeychecker . 4
2.3 Honeyword Generation Techniques 4

2.3.1 Tweaking By Tail . 4
2.3.2 Modeling Syntax . 5
2.3.3 Hybrid . 5
2.3.4 Simple Model . 5

3 Honeyword Guessing 7
3.1 Honeyword Guessing . 7
3.2 Findings in Previous Work . 7
3.3 Evaluation Metrics . 8

3.3.1 Flatness . 8
3.3.2 Flatness Graph . 8
3.3.3 Success-Number Graph . 9
3.3.4 Graph Interpretation . 10

4 Using PassFlow for Honeyword Guessing 11
4.1 Generative Models and Normalizing Flows 11
4.2 PassFlow . 12
4.3 PassFlow for Honeyword Guessing 12

5 Experimental Setting and Results 13
5.1 Dataset . 13
5.2 HGT Implementation Details and Settings 14
5.3 Markov Guesser Implementation . 15
5.4 PassFlow Implementation . 15
5.5 Guessing Tasks . 16

5.5.1 Flatness Graph Guessing Task 16
5.5.2 Success-Number Graph Guessing Task 17

5.6 Results . 18
5.6.1 Tweaking by Tail . 18
5.6.2 Modeling Syntax . 19
5.6.3 Hybrid Technique . 19
5.6.4 Simple Model . 20

5.7 Reflection on Results . 21
5.8 Tools . 21

Contents iv

6 Conclusions 22
6.1 Future Work . 22

Bibliography 23

1

Chapter 1

Introduction

In today’s era, passwords are by far the most widespread method of online user
authentication, vastly used for accessing accounts and safeguarding sensitive data.
They act as the initial barrier against unauthorized intrusion, guarding information
ranging from personal emails and social media accounts to financial details and
healthcare records. While passwords have proved to strike an adequate balance
between usability and security for use by the general public, this method remains
vulnerable to a number of security threats, of which today, one of the most common
is the leakage of password files from online services and platforms.

Password leaks occur when confidential password data is unintentionally exposed
or compromised, often through security breaches, vulnerabilities, or human error.
These leaks can have serious consequences, enabling unauthorized individuals to
access sensitive information, perpetrate identity theft, and possibly compromise
organizational or in some cases even national security.

Some notable instances of such incidents include Facebook (2021) [13] with 530M
account exposed, MySpace (2013) [18], with 360M accounts exposed and Yahoo
(2013-2016) [2] with over 3 billion accounts exposed. These are just a few stand-out
examples of this very widespread problem. The ITRC 2022 Data Breach Report
[5] counts 175 leaks containing passwords just in 2022. What’s worse, is that these
leaks go undetected for long periods of time, sometimes ranging from months to
years, and most often they are only detected when the attackers publish the data
online themselves. One notable example is the 2013, 3 billion records leak of Yahoo,
only revealed in 2017.

Honeywords [10] emerge as one of the most promising countermeasures to this
problem. First envisioned by Juels & Rivest, the honeyword system makes use of
automatically generated decoy passwords, that are strategically inserted among the
genuine passwords in such a way that when a leak occurs attackers are unable, or
at least significantly impeded, in distinguishing the real passwords from the decoys.
The main concept of this approach is to complicate the attackers’ task by making
it difficult to discern a real passwords from a decoy one, so enabling a system to
detect an attack and take protective measure.

In Chapter 2 we will give a detailed explanation of the honeyword system.
Some previous work has been done to critically analyze the security of the

honeyword system, in particular, Wang et al., in their work “Security analysis of
honeywords” [17], which serves as a base for this thesis, have experimented with
different types of attacks towards a honeyword protected system. What Wang et al.
were able to show is that while still effective in principle, the honeyword system is
substantially less safe than claimed in [10], and even unsophisticated methods can
be used to guess the genuine passwords among the decoys with a relatively high

2

level of accuracy.
This thesis proposes to take as example the work of Wang et al. in [17] and to

compare a new, more sophisticated attack method to one of the best performers in
[17], in order to test it’s efficacy.

The method we are going to use is based on a machine learning model called
PassFlow [15], devised by Pagnotta et al.

PassFlow is a type of generative model, more specifically categorized as a
generative flow type model.

The model works by learning a probability distribution, in this case passwords,
and then sampling from that distribution. We however are not interested in the
generative capabilities of the model, what we are going to do is use it “in reverse”.
Generative Flows, compared to other types of generative models based on machine
learning methods like VAEs [12] or GANs [7], have the unique property of being
invertible in such a way, that instead of using it to sample new elements from
a learned distribution, a sample can also be given to it and in return an exact
log-probability of that sample in the learned distribution is obtained. This is the
intuition behind the use of PassFlow for this thesis.

We discuss more in depth Generative Flows and PassFlow in Chapter 4.
In this thesis we tested PassFlow’s guessing capabilities against all four honeyword

generation techniques presented in [10], and then compared PassFlow’s performance
with a model chosen amongst the ones used in [17].

Our findings show that while the other model (Markov) performs generally better,
PassFlow has a distinct and significant advantage in some specific situations.

We will discuss the experiment setup and our results in Chapter 5.

3

Chapter 2

Honeywords

2.1 Basics of the Honeywords System
Honeywords, as proposed by Juels and Rivest in [10], are decoy passwords

associated with each user’s account alongside the genuine password. These false
passwords are designed to confound adversaries who manage to obtain a file of hashed
passwords. When an attacker successfully inverts the hash function, distinguishing
between the real password and a honeyword becomes a challenge.

Consider a web service with n users, where each user ui has an associated
password pi stored in a database. In the honeyword system, a Honeyword Generation
Technique (HGT) is used to automatically generate, for each user, a number of
password-like strings called honeywords meant to be decoys for an attacker who gets
access to the password database. The honeywords are generated for each user, often
on the base of the user’s original password pi, and are then inserted in the password
database together with the original password, all linked to ui’s username.

The term "sweetword" refers to a password-like string that can either be the gen-
uine password or a honeyword. Each user will have k distinct associated sweetwords
(1 genuine password, and k − 1 honeywords), each of which can be denoted as swi,j .

Def. Sweetword: a sweetword is a password-like string that could be either a
genuine password or a honeyword.

Def. Sweetword Set: a collection of k password-like strings all associated to
the same user, one of which will be the user’s genuine password, while the remaining
k − 1 will be honeywords generated by the HGT.

We can denote the set of ui’s sweetwords as SWi, where

SWi = HWi ∪ {pi}

and where HWi is the set of the k − 1 honeywords generated for the user ui.
Once the database is protected by honeywords, an attacker who managed to

obtain the password database, and to invert the hash function, will still face the
hurdle of having to identify which of the k sweetwords associated with each user is
the genuine password, also knowing that any attempt to log in using a honeyword
might trigger an alarm.

2.2 The Honeychecker 4

2.2 The Honeychecker
A fundamental piece of the honeyword system as described in [10] is the "honey-

checker". The honeychecker is a separate, hardened auxiliary server that is assumed
to be secure. It stores the information necessary to differentiate each user’s genuine
password from its associated honeywords.

Given a tuple (u, s), containing a username u and a string s, the honeychecker
will return "true" if s is the genuine password associated to the username u, and
"false" otherwise.

In the background however, the honeychecker will also verify if s is one of the
honeywords associated with user u. If it finds that s is indeed a honeyword for that
user, then the honeychecker will increment two counters: one keeping track of the
number of attempted honeyword logins for the user u, and one keeping track of
attempted honeyword logins on the whole system.

If the number of attempted honeyword logins for a given user u exceeds a certain
threshold value T1, the user’s account will be suspended until some action to restore
the safety of the account is taken (e.g. a password reset). If instead the total number
of attempted honeyword logins on the entire system exceeds a certain threshold
value T2 the whole system may be shut down or temporarily disabled. The specific
threshold values and the protective measures taken in case of an alarm will vary
from system to system.

2.3 Honeyword Generation Techniques
As mentioned, honeywords are generated automatically by the system. This

process is of the utmost importance, given that the security of the system will in
large part depend on the quality of the honeywords generated. A technique or an
algorithm used for generating honeywords is referred to as Honeyword Generation
Technique (HGT)1.

In the original honeyword paper [10], Juels & Rivest propose four different
HGTs, the security of whose is also analysed in [17], where Wang et al. assess their
effectiveness against honeyword guessing attacks.
Here we describe the four techniques as implemented and discussed in [10] and [17].
These are important because we will later run our experiments against each one of
these techniques. Note that while the descriptions here primarily illustrate how these
techniques work, the actual code implementation requires significant optimization
to ensure reasonable run times on large datasets.

2.3.1 Tweaking By Tail
This technique consists in the random tweaking of the last t characters of the

password. Given a parameter t (a value commonly used is t = 3), and a genuine
password p for user u, we generate k − 1 honeywords by substituting randomly each
one of the last t characters of p with a random character of the same class. This
means that a lowercase letter is substituted by another, randomly chosen, lowercase
letter, an uppercase letter by an uppercase letter, a digit by a digit and a special
character by a special character.
For example, with t = 3, some possible honeywords for the password Tur1ng@4 could
be Tur1nr!2, Tur1no&4 and Tur1nt?0 .

1Also called Honeyword Generation Method (HGM) in the literature

2.3 Honeyword Generation Techniques 5

2.3.2 Modeling Syntax
This technique, based on the method described in [6], consists of extracting a

syntax from the password, and then creating the k − 1 honeywords by generating
strings with the same syntax. In this context "extracting a syntax" means decom-
posing the password into tokens representing consecutive sequences of characters of
the same class inside the password. Honeywords are then generated by randomly
replacing each of those tokens with values having the same length and the same type
of the token.
For example the password james007BOND has syntax L5D3U4 (where L5 represents
a sequence of 5 lowercase letters, D3 a sequence of 3 digits, and so on), using that
syntax as a base, some generated honeywords could for example be bravo435HOLA,
nicks120BEAR or jones899LAMA. Note that the values for tokens composed by lowe-
case or uppercase letters are selected from a dictionary (for this thesis the dictionary
used was a list containing the most common 20k English words [11]).

2.3.3 Hybrid
The Hybrid technique aims at combining the strengths of the Tweaking by Tail

technique and the Modeling Syntax technique. For a given password p, its syntax
is first extracted, then from that syntax, a set of a "seed sweetwords" are created
following the same approach we used in the Modeling Syntax technique, (note that
this set of seed sweetwords also contains p itself). Then from each of the seed
sweetwords, b honeywords are created using the Tweaking by Tail approach. Now
we have a selection pool of a · b honeywords from which we randomly select k − 1
samples.
It’s recommended for efficiency that a ≈ b ≈

√
k.

2.3.4 Simple Model
The final approach proposed by Juels & Rivest in [10] consists of a relatively

straightforward algorithm. Firstly, a list L containing thousands of real passwords
and a given number (around 8% of L’s total length) of random character sequences
of varying length is initialized. Then, in order to generate each honeyword a random
password w of length d is selected from L. We then iterate through the characters
wi of w, with i ranging from 1 to d, and we insert them one by one as the characters
ci of the honeyword that is being created, however at each step i, before setting
ci = wi:

• With 10% probability w is replaced with another randomly selected password
from L.

• With 40% probability w is replaced with another randomly selected password
from L, satisfying the condition that wi−1 = ci−1.

• With 50% probability, w remains the same.

Note that each time w changes, the value of d must be updated. Once a honeyword
is created, it’s necessary to check that by pure chance it wasn’t generated equal to
the original password, and other eligibility checks can be implemented as well based
on the system’s specifics, some examples are given in [10]. This method differs from
all the others we have seen before in the sense that the honeywords generated here
do not depend on the user’s actual password.

2.3 Honeyword Generation Techniques 6

These four are only a few, fundamental HGTs, and will be used for consistency
with previous work ([17],[10]), there are however many more HGTs following different
approaches and with different characteristics. A more comprehensive overview of
common available techniques can be found in [19].

7

Chapter 3

Honeyword Guessing

In this chapter, the basic idea of honeyword guessing will be introduced, and an
overview of the previous relevant work, as well as previous experiments and methods
(namely those in [17]) will be presented.

3.1 Honeyword Guessing
The task of honeyword guessing is a relatively straightforward one:

Given a user ui and his k associated sweetwords, i.e. the set SWi containing ui’s
genuine password pi and k − 1 honeywords, the aim of the honeyword-guessing task
is to correctly guess which among the k elements of SWi is the genuine password for
ui.
To accomplish this, a guesser model analyzes each sweetword in SWi and assigns it
a probability, then, the element with the highest assigned probability is picked as
the model’s guess.
The honeyword method aims to make the genuine password indistinguishable from
the honeywords. Therefore, a good Honeyword Generation Technique will generate
honeywords that will make it harder for our model to assign a probability score
discerning the real password from the honeywords. Given a set of honeywords and
a password, a Honeyword Generation Technique (HGT) is said to be ϵ-flat, if the
highest probability that a guessing model assigns to the actual genuine password is
≈ 1

k , where k is the number of sweetwords for each user. In an ideal scenario then,
with a perfectly flat distribution, every sweetword (whether it’s the real password
or a honeyword) is given by the attacker an equal probability of being the actual
password. A perfect HGT then, would make the guesser model perform no better
than a random guesser.

3.2 Findings in Previous Work
One of the primary works tackling the task of analysing the security of the

honeyword systems is [17]. In that paper, Wang et al. use simple as well as more
advanced trawling-guessing attacks with probabilistic password models (specifically
Markov Models and PCFGs), and using such models they manage to empirically
prove that the four HGTs proposed by Juels & Rivest are considerably less secure
than suggested in [10].

The experiments in Section IV. B of [17] are of particular interest, since they
employ Markov Models and PCFGs as guesser models, and use them to attack

3.3 Evaluation Metrics 8

the tweaking-by-tail HGT. The results of their experiments show how these two
methods perform better than the other, previously tested ones, establishing PCFGs
and Markov Models as best performers, at least in the confines of the experiments
in [17].

The significance of [17] for this thesis is twofold: it serves both as foundational
inspiration and as technical guidance. We will implement similarly (or completely
adopt) some of its procedures and evaluation methods, in order to test empirically
the performance of a new advanced probabilistic password model: PassFlow [15].
However, it is important to note, that aim of this thesis is not that of comparing
results with those obtained by Wang et al. in [17], since some small but significant
differences in the implementation make the comparison not entirely equitable. In-
stead, the primary goal of this thesis is that of assessing the performance of PassFlow
as a potential guesser model to be used in honeyword guessing, and to do so by
analysing it’s performance in relation to that of another probabilistic password model
(Markov) used with success in [17].

3.3 Evaluation Metrics
The choice of evaluation methods significantly influences the interpretation of an

experiment.
It’s important to note that the evaluation resulting from an experiment can

be interpreted from two different points of view: it can be interpreted from the
guessing perspective, as in "how good is guesser model X at distinguishing the
genuine password from the honeywords", or it can be interpreted from the HGT
perspective, as in: "how good is HGT Y at generating honeywords indistinguishable
from the genuine password".

Every experiment involves both a HGT and a guesser model, so these two aspects
are two sides of the same coin: the same data can then be interpreted from the
attacker’s perspective as well as from the defender’s perspective. In [17]Wang et
al. compare both HGTs and guessing models by looking at the problem from both
perspectives. In this thesis however, we will look at the experiments mostly from
the attacker’s point of view, comparing the performance of different models across
various HGTs.

3.3.1 Flatness
The first evaluation metric for HGTs is the flatness evaluation model introduced

in [10], according to which a HGT is said to have flatness ϵ with respect to a certain
guesser model if the average success rate for guessing the genuine password on the
first attempt is ϵ. The ideal case for a defender, is to have a HGT of flatness ϵ = 1/k,
where k is the number of sweetwords for each user. In such a case, where the attacker
has a chance not much greater than 1/k of guessing the actual password on the
first try (essentially random guessing), the HGT is said to be "approximately flat"
or ϵ-flat. This method of evaluation however, has the downside of only measuring
the average success rate for the first attempt, so it will only be meaningful for a
honeychecker where T1 = 1.

3.3.2 Flatness Graph
A more comprehensive evaluation metric proposed in [17], as an expansion of the

flatness method, is that of the flatness graph. This is an expansion on the flatness

3.3 Evaluation Metrics 9

model as it allows for the measurement of the average case even for systems that
allow more than one online guess (honeycheckers that allow T1 > 1). This method
involves plotting on a graph the average success rate at which the attacker guesses
the genuine password in the first x attempts.

Figure 3.1. Example of flatness graph

Note that in the graph, the value for x = 1 (success rate after 1 attempt) is the
same measure of flatness proposed by Juels & Rivest.

3.3.3 Success-Number Graph

Figure 3.2. Example of success-number graph

A second evaluation metric proposed in [17] is the success-number graph. The
aim of this method is to measure to which extent a HGT generates what Wang et
al. describe as "low-hanging fruits": honeywords that are easily distinguishable from
the actual password.

3.3 Evaluation Metrics 10

From the attacker’s point of view, this same metric is used to evaluate the
capability of a guesser model to detect such "low-hanging fruits", generated by a
certain HGT, and that’s the perspective under which we will use it in this thesis.
This evaluation technique involves plotting on a graph the total number of successful
guesses made by the attacker before making x incorrect guesses.

It is a metric of interest because from the security of the system not only is it
important how many correct guesses an attacker can make, but also how many it
can make before making a number of mistakes sufficient to set off the honeychecker’s
system-wide alarm (at T2 incorrect attempts). So it’s fundamental for an attacker,
that the guesser model used is capable of making as many correct guesses as possible
as early as possible, before making a high number of mistakes.

3.3.4 Graph Interpretation
These graphs provide a more nuanced insight on the performances of different

attackers with respect to the single number provided by the flatness metric. A
general rule of thumb to interpret these graphs is that the higher a curve is, or the
higher its AUC (Area Under the Curve) is, the better a guesser model is performing.
Furthermore, especially with the success-number graph, a curve that rises early and
fast indicates a model performing well in the first attempts, which is very important
for an attacker, in order to avoid triggering the system-wide honeychecker alarm.

11

Chapter 4

Using PassFlow for Honeyword
Guessing

4.1 Generative Models and Normalizing Flows
Generative models are a class of machine learning algorithms designed to learn

to approximate the underlying data distribution derived from a set of training data,
in order to then generate previously unseen samples resembling the given training
data.

The most commonly seen architectures for generative models are VAEs [12] and
GANs [8], and more recently Normalizing Flows [16].

Normalizing Flows, also known as Generative Flows, are a type of generative
model. They transform simple probability distributions, usually Gaussian, into
more complex distributions by applying a series of invertible and differentiable
transformations.

Given a continuous random variable z, sampled from a simple base distribution
p(z) the idea is that of transforming this simple distribution into a more complex
one using some function f that is created from the composition of a sequence of
invertible transformations.

z ∼ p(z)
x = f(z) = fk ◦ · · · ◦ f2 ◦ f1(z)

Since each fi is invertible, f will also be invertible.
What makes normalizing flows unique is that while when using GANs we have no

latent variable inference and when using VAEs we can only obtain an approximate
inference, Normalizing Flows, due to the invertibility of f , are capable of exact
log-likelihood evaluation, which in turn allows for exact latent variable inference.
This means that not only can we generate a sample from f , but that additionally,
if we have a sample x from the data space, we can feed it to the inverse of f to
determine the unique prior z that generated x. We are essentially inverting the
direction of the flow and mapping a sample from the data space back to the latent
space. When we invert the flow, we can use the change of variables formula after
each transformation. This renormalizes the probability distribution, allowing us to
calculate the exact log-likelihood of a given sample x.

p(x) = p(z) Πk
1

∣∣∣∣det
(

∂f−1
i

∂zi

)∣∣∣∣ = p(z)
∣∣∣∣det

(
∂f−1

∂x

)∣∣∣∣ (4.1)

4.2 PassFlow 12

where
∣∣∣∣det

(
∂f−1

∂x

)∣∣∣∣ is the magnitude of the determinant of the Jacobian of f−1.

4.2 PassFlow
PassFlow [15], developed by Pagnotta et al., is a type of generative flow model

specifically intended for the task of traditional password guessing. It competes
with other ML models for password guessing, like PassGAN [9], or with more
traditional tools like John the Ripper [4] or HashCat [3]. PassFlow, when trained on a
dataset comprising real-life passwords (for example, sourced from a publicly available
password leak such as RockYou [1]), learns an invertible function f . This function
is designed to transform a basic Gaussian distribution into one that approximates
the distribution of the training data. By utilizing this learned distribution, we can
generate a vast number of samples that mimic real-life passwords. These generated
samples can subsequently be used in password cracking attempts.

4.3 PassFlow for Honeyword Guessing
The main idea of this thesis is to evaluate PassFlow’s performance as a potential

guesser model an attacker could use against a honeyword system. The concept, then,
is that of using PassFlow for guessing honeywords. In order to do that, we train
the model as usual, but then instead of using the learned function f to generate
samples from the distribution, we use it "in reverse", feeding samples to f−1, and
using Equation 4.1 in order to find the probability that the model gives to the
sample, this exact probability assessment is only possible thanks to the invertibility
of flow-based models. With this setup, all the k sweetwords for a given user can be
fed to the model, which will assign a probability to each of them, then, the one with
the highest assigned probability is picked as the model’s guess for the user’s genuine
password among the k sweetwords.

13

Chapter 5

Experimental Setting and
Results

5.1 Dataset
For our experiments we selected the RockYou 32M password dataset [1], but we

cut by half its size, by random sampling from it ≈16M passwords. This reduced
dataset was created in order to facilitate computation and handling of the data
while still being able to give significant results. The resulting list was first filtered
to remove all passwords containing whitespace or non-ascii characters, then also
all passwords with a length less than 2 characters or more than 10 characters were
removed. After this filtering the dataset contained ≈ 14.7M passwords, this reduced
and filtered dataset will be the base dataset used for our experiments.

The next step was that of splitting the dataset in a training set and a test set.
Note that these two sets only contain real passwords.

The training set was used to train the guesser models, while the test set became
the set of passwords from which, for each user, we will later generate honeywords
using the various Honeyword Generation Techniques. Those honeywords were then
used to create a sweetword database.

Inside the sweetword database every entry consists of a username and a sweetword,
that could either be a real password or a honeyword. Each user has k associated
sweetwords. In our honeyword system, used in the experiments, we use k = 5.
Usually the k parameter is higher, and the recommendation given in [10] for a live
system is k = 20. However, since our system doesn’t have real-life security purposes,
and we are only comparing the relative performances of two guesser models, a lower
k is appropriate.

To create the training and test sets for the experiments, we started from the
14.7M password dataset we described above, and divided it following a 90/10 split.

This resulted in a training set containing ≈ 13.3M passwords, and a test set
containing ≈ 1.47M passwords.

The training set was the same for all guesser models.
From the test set we created the sweetword databases that we needed for our

experiments. In order to do that we first associated each password in the test set to
a generated username, then, using a Honeyword Generation Technique, we created
k − 1 = 4 honeywords for each user, feeding its associated password to the HGT
function. The resulting honeywords are all associated to the user, and added to the
sweetword database together with the user’s genuine password. Since we selected
k = 5, once done, each sweetword database contained 1.47M×5 = 7.3M sweetwords

5.2 HGT Implementation Details and Settings 14

(each password in the test set contributes to 4 honeywords and 1 genuine password,
so we multiply the 1.47M entries in the test set by k = 5).

We repeated the process described above with each of the four Honeyword
Generation Techniques described in Section 2.3.

This left us with four sweetword databases, each containing ≈ 7.3M sweetwords,
or 1.47M sweetword sets (one for each user).

We already set limits on the length and encoding of valid "password-like" strings
for our experiments. Another criteria for filtering out invalid passwords is the choice
of allowed characters in the passwords. We choose to include as allowed characters:

1. Lowercase Letters: abcdefghijklmnopqrstuvwxyz

2. Uppercase Letters: ABCDEFGHIJKLMNOPQRSTUVWXYZ

3. Digits: 0123456789

4. Special Characters minus "`" :
!"#$%&’()*+,-./:;<=>?@[]_{|}^∼\

These are all the visible ASCII-7 characters minus the backtick "`" (ASCII code
96), the reason for excluding it is that the backtick character creates some issues
with PassFlow, since it’s used as a special character in its string encoding algorithm.
Due to this, in order to make a fair comparison between the two, we filtered out all
passwords containing the "`" character.

5.2 HGT Implementation Details and Settings
In order to conduct our experiments we first implemented the components of

the honeyword system, so the honeychecker and the four honeyword generation
techniques, as described in Section 2.3.

For implementing the Tweaking by Tail technique we used t = 3.
In the implementation of the Modeling Syntax technique, we used as a dictionary

a list of the 20K most common English words [11].
For the Hybrid technique we used a = 3 and b = 3, the settings of the techniques

used (Tweaking by Tail and Modeling Syntax), remain the same (t = 3 and [11] as a
word dictionary).

For implementing the Simple Model technique, the password list from which
strings are selected contains all the password from the test set, augmented by 8%
random character sequences of various lengths.

It is important to note that the code implementing these techniques needs
significant optimization with respect to their description here, which serves more to
illustrate their working, in order to ensure reasonable run times.

Specifically, in the Tweaking by Tail technique the creation of dictionaries for
faster lookup based on character classes (digits, uppercase, lowercase, special) is
important.

In the Simple Model technique, specifically for the "40% probability case" (see
Section 2.3.4), a lookup dictionary with an outer and inner key was created before-
hand, allowing for fast lookup of lists of passwords having a certain character c in a
certain index i.

In the Modeling Syntax technique, regular expressions were used for faster syntax
extraction and a token dictionary created beforehand was used for faster generation
of tokens of different kinds and lengths.

5.3 Markov Guesser Implementation 15

5.3 Markov Guesser Implementation
Firstly, the Markov Model Guesser was implemented. Markov Models, commonly

known as Markov Chains, are statistical models particularly suited for representing
stochastic processes that operate over a finite set of states. A Markov Model works
by observing sequences generated by a process (in this case the real passwords from
the training set) and using the frequency of the transition between each pair of
states (one character being followed by another), as a way to infer the probability
of the transitions between different states. This data is then used in order to then
populate a transition probability matrix. This matrix contains the probabilities pi,j

for transitioning between each pair of states (i, j). When working with character
sequences, or password-like strings as in our case, the states are all the allowed
characters, and the sequences are complete password-like strings. The aim is that
of creating a simple model capable of capturing the hidden "rules" and tendencies
humans follow when creating real passwords.

After training the Markov Model, by "showing it" all the passwords from the
training set, we can present it a new, previously unseen password-like string s.
The transition probability matrix derived from the training will then be utilized to
determine a probability value that will vary based on how much the structure of
the sequence of characters in s resembles that of the real passwords shown during
training. The sequence’s probability is calculated by iterating over each consecutive
pair of states and determining the transition probability from the matrix.

Note that, as best practice, the calculations are done as log-probabilities, in
order to avoid potential issues related to floating point underflow.

Furthermore, to ensure stable probabilities and avoid zeroes, an "Add-k" smooth-
ing technique is used.

Finally, the implementation of the Markov Model that was chosen, based on
performance in the experiments, does not make use of start-of-sequence and end-of-
sequence states. However, this approach implies that the Markov Model will tend to
assign higher probabilities to shorter sequences, and given the necessity to compare
sequences of different lengths, the probability needs to be normalized for length:
to do this we first exponentiate the log-probability, then we apply the n-th root
to the result, where n is the length of the sequence, this effectively corresponds to
calculating the geometric mean of the transition probabilities, a common method
used to normalize for length.

5.4 PassFlow Implementation
For the implementation of PassFlow, the code of the original implementation

used is provided by Pagnotta et al. and it’s publicly available online [14]. Only
minor adjustments and additions to the original code were necessary to adapt it for
the use we made of it, and the inner workings of the model remained unchanged.

For the training of the model, since PassFlow makes use of both a training and
validation set, the same training set that we used for training the Markov Model
was split in a 80/20 fashion (80% training set and 20% validation set).

One of the main advantages of PassFlow over other machine learning models is
that PassFlow can produce very good results with a very small number of samples
from the training set. In the original PassFlow paper [15] Pagnotta et al. sample
only 300K passwords from the training set, and use those to train the model for 400
epochs. In this thesis we trained the model on 500K samples for 100 epochs. Six
different versions of PassFlow were trained varying different parameters including

5.5 Guessing Tasks 16

Table 5.1. PassFlow Training Parameters

Parameter Value
Max Train Size 500000
Max Test Size 2000000

Epochs 100
Batch Size 128

Learning Rate 5 × 10−4

Weight Decay 5 × 10−5

the number of samples used for training, the number of samples used for validation,
the number of epochs, the batch size, the learning rate and so on. From these
configurations, we selected the best performing one, its parameters are reported
in Table 5.1. Further increases in the number of training epochs or the number of
training samples didn’t seem to affect the performance of the model on guessing tasks
in a significative manner. The PassFlow code provided by Pagnotta et al. already
has most functions necessary for "reversing" the model. We use PassFlow’s functions
to pad, encode and preprocess strings, then to calculate the necessary log-probability
and log-determinant that we then use to compute the sample’s probability.

5.5 Guessing Tasks
Each Guesser Model is evaluated against two guessing tasks that allow us to

gauge the model’s performances using the flatness graph and the success-number
graph evaluation metrics described in Section 3.3.

Both these tasks begin with a sweetword database of the kind described above,
containing all the k sweetwords for each user. Then, for each user ui, with set of
sweetwords SWi = {swi,1, swi,2, . . . , swi,k}, we feed SWi to the guesser model which
generates a probability value for each sweetword pi,1, pi,2, . . . , pi,k, these probabilities
are then normalized for each user as pi,j = pi,j/

∑k
t=1 pi,t.

This normalization in necessary since as pointed out in [17], if we had two sets
of sweetwords SW1, SW2 for two separate users, and in SW1 we have a sweetword
with p = 0.4 and all the others have p = 0.35, while in SW2 we have a sweetword
with p = 0.30 and all the others have p = 0.01, even if the sweetword in SW1 has
higher probability, the one in SW2 is more likely to be a correct guess, and should
therefore be preferred by the guesser model, that should send to the honeychecker
the guess for SW2 first. That’s the purpose of the normalization.

As noted in [17], if the honeychecker allows for T1 > 1, then the probabilities
must be re-normalized after each failed attempt.

5.5.1 Flatness Graph Guessing Task
This task is used to create the flatness graph.
Starting with the sweetword database and with the normalized probabilities

computed for all sweetwords, we want to compute the average success rate for the
correct guessing of the actual password (ranging from 0.0 to 1.0) after x attempts
sent to the honeychecker (the possible number of attempts ranges from 1, if the
correct guess happens on the first try, to k, if the genuine password is left as the last
guess). In order to achieve this, we will iterate through each sweetword set SWi and
send guesses to the honeychecker in order of descending probability, only interrupting

5.5 Guessing Tasks 17

after the genuine password is found in x attempts (where x ∈ {1, 2, . . . , k}). We will
repeat this procedure for each user’s sweetword set, this will allow us to compute
the average success rates after x attempts.

Note that the success rate for x = k will always be 1 and the success rate for
x = 1 will be the flatness as described in Section 3.3.1.

For this task, our implementation of the honeychecker will not set a limit on T1
or T2 to ensure the task runs to completion.

5.5.2 Success-Number Graph Guessing Task
The second task will be used to create the success-number graph. As before, we

start with the sweetword database complete with the normalized probabilities for
all sweetwords, this time however, instead of attempting guesses until each genuine
password is found, we will only send to the honeychecker one guess per user, selected
as the sweetword with the highest assigned (normalized) probability. The sweetwords
are sent to the honechecker in descending order of normalized probability. For each
user then, we will have a binary result (successful guess/failed attempt). This will
allow us to plot the cumulative number of successful attempts before the x-th failed
attempt. As discussed in Section 3.3.3, this is of interest because it will inform us
on how many accounts an attacker could get access to before reaching T2 failed
attempts and triggering the system wide alarm.

For this task, our implementation the honeychecker will have T1 = 1, so a
maximum of one online guess per user, and we will not set a limit for T2 (system-
wide alarm, see Section 2.2) in order to let the guessing task run to completion.

5.6 Results 18

Figure 5.1. Experiment Setup

5.6 Results
In our experiments, we used both guesser models: Markov and PassFlow. Each

of them performed both evaluation tasks outlined previously, repeated across the
four Honeyword Generation Techniques described in Section 2.3. This approach
allowed us to compare their relative performances, strengths and weaknesses under
different settings. These are the results from the different experiments.

5.6.1 Tweaking by Tail
In the Tweaking by Tail experiment the Markov Guesser outperforms the Pass-

Flow Guesser in the success graph. On the success-number graph, their performances
are quite similar, with a slight edge for PassFlow in the 101 to 102 range, and Markov
ahead in the rest of the curve.

5.6 Results 19

(a) Flatness graph (b) Success-number graph

Figure 5.2. Evaluation Graphs for the Tweaking by Tail HGT Experiment

5.6.2 Modeling Syntax

(a) Flatness graph (b) Success-number graph

Figure 5.3. Evaluation Graphs for the Modeling Syntax HGT Experiment

In the Modeling Syntax experiment PassFlow displays a strong advantage with
respect to Markov. We can see that in the flatness graph, both models perform very
similarly, and comparing this graph with the ones from other experiments we can
see that they are both having a relatively hard time. In the success-number graph
PassFlow starts at an advantage and keeps performing considerably better than
Markov until around 104 failed attempts, and afterwards they perform similarly.
The fact that PassFlow obtains a higher number of successful attempts in that early
range is significant, since it would allow an attacker with access to that model to
successfully log into a greater number of accounts when attacking a system where
the honeychecker has a T2 value in that range, which is plausible.

5.6.3 Hybrid Technique
In the Hybrid Technique experiment we can see that the Markov Model Guesser

performs better than the PassFlow Guesser in the flatness graph, however in the
success-number graph PassFlow overtakes Markov from 101 up to almost 103 failed
login attempts. Like in the previous case, the fact that PassFlow obtains a higher

5.6 Results 20

(a) Flatness graph (b) Success-number graph

Figure 5.4. Evaluation Graphs for the Hybrid Technique HGT Experiment

number of successful attempts in that range is meaningful, since it would allow an
attacker to successfully login into more accounts when attacking a system with a T2
value in that range.

5.6.4 Simple Model

(a) Flatness graph (b) Success-number graph

Figure 5.5. Evaluation Graphs for the Simple Model HGT Experiment

The Simple Model technique seems to be the most secure of the four, giving a
hard time to both models and especially to the PassFlow Guesser, which in this
case performs worse than the random guesser. A possible intuition on why it could
be that the two models struggle with this HGT, is that in our implementation of
the Simple Model technique, the list L from which we randomly select passwords
(see Section 2.3.4), is largely composed by the test set itself, and this results in
honeywords that are aggregates of other passwords in the test set, this in turn allows
the honeywords to more seamlessly blend in with the genuine passwords, giving
more of a challenge to the models.

5.7 Reflection on Results 21

5.7 Reflection on Results
Our experimental results show that PassFlow can be effectively repurposed as

a Honeyword Guessing model, the performance of which varies widely based on
the specific HGT that it is working against, and ranges from poor to performing
the same as or even significantly better than other models such as Markov’s, which
qualified themselves as top performers in previous research ([17]).

5.8 Tools
This project was implemented in python, using libraries such as pandas, numpy

and matplotlib. Most of the project was run locally on jupyter notebooks. To
make use of additional computational power and take advantage of GPU access, the
training of the various PassFlow model versions was conducted on Google Colab.

22

Chapter 6

Conclusions

Honeywords are a promising technology that is very well capable of increasing the
security of our password-protected lives. Despite this, they do have some inherent
flaws that make them vulnerable to guessing attacks.

PassFlow, and normalizing flows in general, are an extremely capable kind of
generative model, that thanks to their unique property of invertibility, and the
ability to produce great results from comparatively very small training sets (orders
of magnitude less than other kinds of generative models) reach an impressive level
of versatility.

In this thesis, we explored these two seemingly disconnected worlds: that of
normalizing flows, and that of honeywords, and delved into their technicalities,
merging them in a single project that made use of both of these elegant techniques.
The work of this thesis is, to the best of our knowledge, the first effort to assess the
capabilities and potential of normalizing flows (PassFlow [15]) as attackers in the
field of honeyword guessing. This thesis manages to show PassFlow’s limitations,
potential and applicability in said field, through a series of empirical experiments
conducted following the steps of previous research conducted on the same topic
([17]). It’s imperative to note that while this study identified particular strengths
and vulnerabilities, the rapid evolution of the technology around machine learning
and artificial intelligence requires continuous research and adaptation. For instance,
recent advancements such as [20] explore the use of Large Language Models for
HGTs.

6.1 Future Work
More research is needed to truly test the potential and limitations of PassFlow

as a honeyword guesser model and to understand the limitations of the honeyword
system. It would be worthwhile to conduct more comprehensive evaluations of such
models and seek ways to enhance their performance in this field. A potentially
interesting research question is exploring the efficacy of these models from a defensive
point of view, essentially investigating their possible utility as HGTs. Overall, the
research towards the development of improved and more robust HGTs remains itself
an area of interest.

23

Bibliography

[1] Rockyou. http://downloads.skullsecurity.org/passwords/rockyou.txt.
bz2, 2010.

[2] Yahoo raises breach estimate to full 3 billion accounts, by far biggest known.
https://fortune.com/2017/10/03/yahoo-breach-mail/, 2016.

[3] Hashcat. https://hashcat.net, 2021.

[4] John the ripper. http://www.openwall.com/john/, 2021.

[5] 2022 data breach report. Identity Theft Resource Center, page 20, 2022.

[6] Hristo Bojinov, Elie Bursztein, Xavier Boyen, and Dan Boneh. Kamouflage:
Loss-resistant password management. In Computer Security–ESORICS 2010:
15th European Symposium on Research in Computer Security, Athens, Greece,
September 20-22, 2010. Proceedings 15, pages 286–302. Springer, 2010.

[7] Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa
Sengupta, and Anil A Bharath. Generative adversarial networks: An overview.
IEEE signal processing magazine, 35(1):53–65, 2018.

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial networks. Commun. ACM, 63(11):139–144, oct 2020.

[9] Briland Hitaj, Paolo Gasti, Giuseppe Ateniese, and Fernando Perez-Cruz. Pass-
gan: A deep learning approach for password guessing. In Applied Cryptography
and Network Security: 17th International Conference, ACNS 2019, Bogota,
Colombia, June 5–7, 2019, Proceedings 17, pages 217–237. Springer, 2019.

[10] Ari Juels and Ronald L Rivest. Honeywords: Making password-cracking de-
tectable. In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 145–160, 2013.

[11] Josh Kaufman. google-10000-english. https://github.com/first20hours/
google-10000-english/blob/master/20k.txt, 2012.

[12] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114, 2013.

[13] Hannah Murphy. Facebook faces investigation over leak of data of 530m users.
https://www.ft.com/content/0bd7fc8f-cd62-4d57-96c4-bbee8d3deb71,
2021.

[14] Giulio Pagnotta. passflow. https://github.com/pagiux/passflow, 2022.

http://downloads.skullsecurity.org/passwords/ rockyou.txt.bz2
http://downloads.skullsecurity.org/passwords/ rockyou.txt.bz2
https://fortune.com/2017/10/03/yahoo-breach-mail/
https://hashcat.net
http://www.openwall.com/john/
https://github.com/first20hours/google-10000-english/blob/master/20k.txt
https://github.com/first20hours/google-10000-english/blob/master/20k.txt
https://www.ft.com/content/0bd7fc8f-cd62-4d57-96c4-bbee8d3deb71
https://github.com/pagiux/passflow

Bibliography 24

[15] Giulio Pagnotta, Dorjan Hitaj, Fabio De Gaspari, and Luigi V Mancini. Passflow:
guessing passwords with generative flows. In 2022 52nd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pages
251–262. IEEE, 2022.

[16] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing
flows. In International conference on machine learning, pages 1530–1538. PMLR,
2015.

[17] Ding Wang, Haibo Cheng, Ping Wang, Jeff Yan, and Xinyi Huang. A security
analysis of honeywords. 10 2017.

[18] Elizabeth Weize. 360 million myspace accounts breached. https://www.ft.
com/content/0bd7fc8f-cd62-4d57-96c4-bbee8d3deb71, 2013.

[19] Yasser A. Yasser, Ahmed T. Sadiq, and Wasim AlHamdani. A scrutiny of
honeyword generation methods: Remarks on strengths and weaknesses points.
Cybernetics and Information Technologies, 22(2):3–25, 2022.

[20] Fangyi Yu and Miguel Vargas Martin. Targeted honeyword generation with
language models, 08 2022.

https://www.ft.com/content/0bd7fc8f-cd62-4d57-96c4-bbee8d3deb71
https://www.ft.com/content/0bd7fc8f-cd62-4d57-96c4-bbee8d3deb71

